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A SURVEY OF SOME PROBLEMS AND RECENT

RESULTS FOR PARAMETER ESTIMATION AND

OPTIMAL CONTROL IN DELAY AND DISTRIBUTED
PARAMETER SYSTEMS

by

7

H. T. Banks

e

ABSTRACT

We survey a number of applications and problems motivating our current
efforts on numerical techniques for parameter estimation in and optimal
control of delay and partial differential equations. We then outline two
different approaches for establishing theoretical convergence results for
estimation algorithms. An application of modal techniques to the investiga-
tion of transport in brain tissue is briefly explained. A sketch of a con-
vergence theory for spline techniques for function space parameter estimation

problems is given. -°*




§1. Introduction.

In this lecture we shall first present a brief account of several areas
of applications which have motivated our recent efforts, both theoretical and
3

numerical, on approximation methods for estimation and control of infinite

dimensional systems. We then shall sketch the general theoretical ideas we

PRSP Y,

have employed to establish convergence results for related iterative schemes.

Finally we return to two of the applications and illustrate the use of these

ideas by explaining in more detail our investigations for these problems. As
we shall make clear, our efforts on many of the problems mentioned below
involve joint endeavors with colleagues and students. In addition to a well-
deserved thank you to Richard Ambrasino, James Crowlev, Patti Daniel, Marv ji
Garrett, Karl Kunisch, and Gary Rosen, we would also like to publicly
acknowledge E. Armstrong (NASA Langley Research Center), R. Ewing and

G. Moeckel (Mobil Research and Development Corp.), P. Kareiva (Brown University).
J. P. Kernevez (Université de Technologie de Compidgne), W. T. Kyner (University
of New Mexico), and G. A. Rosenberg'(V. A, Medical Center, U. N. M. School of
Medicine) for numerous stimulating discussions and suggestions which have
substantially affected the investigations of our group at Brown University.

Our discussions here focus on a general class of systems including

nonlinear delay systems

x(t) = f(a,t,x(t),xt,x(t-Tl),...,x(t-Tv)) + g(t) ,
(L x(8) = ¢(8) , =T, £e<o0,

q = (a.Tl....,r\)) s

nonlinear distributed parameter systems
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dt dx
)
(2) u(0,%) = q,000 , 5 (0,x) = q¥(x)
u(t,0) = gl(t) ,» u(e,1) = gz(t)

of hyperbolic type, and parabolic systems of the form

-1 2 du
at - k(x) ax (p(x)ax) + qzu + f(q4:tox,u) [y
3 a(0,%) = q0(x) ,

{“11 %12 %13 alé)

oo (g ()]

= | i

du A
u(t,0), T E0)5 ult,1), TRt tg2<t));

{
;

%21 %2 %3 %y

A typical estimation problem consists of the inverse problem of finding the
vector parameter q , given observations {Ej} of the state (or components
of the state) corresponding to known inputs g or gi . A typical control
problem (for fixed parameter values q ) wight consist of minimizing a given

payoff or cost functional subject to (1), (2), or (3), over some admissible

class of control functions g or gi .




§2. Motivating Examples

I. The LN2 Wind Tunnel

The liquid nitrogen wind tunnel (National Transonic Facility) currentlw
being constructed at NASA Langley Researcl. Center is a crvogenic wind tunnel
for which the cost of liquid nitrogen alone is estimated at $6.5 X 106 per
year of operation. The tunnel represents the latest advances in technolegy
in that essentially independent control of Mach number and Reynolds number

(~ temperature) is an anticipated feature. Schematicallv, the tunnel can be

represented as in Figure 1.

FAN
K
SECTION
NTTRoGREN €—] NITROGES
VENT INJECTION
TEST
SECTION
Figure 1

The basic physical model relating states such as Reynolds no., pressure,
and Mach no. to controls such as LN2 input, GN2 bleed, and fan operation
involves a formidable set of partial differential equations (Navier-Stokes) to
describe fluid flow in the tunnel and test chamber. This model has, not
surprisingly, proved to be very unwieldy computationally and probablv cannot

be used directly in design of sophisticated control laws. (Both open loop and

feedback controllers are needed for efficient operation of the tunnel--and




this is clearly a desirable goal. Given the current ectimates of costs of
operation, the funds from only a 1 or 2% savings in oreration costs would
support a nontrivial amount of related research by scientists and engireers!!)

In view of the schematic in Figure 1, it is not surprising tha*
engineers (e.g. see [18]) have proposed lumped parameter models (the variables
representing values of states and controllers at various discrete locations
in the tunnel) with transport delays to represent flow times in sectione of
the tunnel. A specific example is the model (see [1]) for the Mach no. (in
the test chamber) lcop which to first order is controlled by the fan guide
vane angle setting (in the fan section)--i.e. M(t) ~ GVA(t-T) where <
represents a transport time from the fan section to tho test section.

In addition to the design of both open locp and closed loop controllers,
parameter estimation techniques will be useful once data from the completed
tunnel is available (current investigations involve use of data from a %

meter scale model of the tunnel).

II. Enzyme Tubular Reactors

Column reactors in which enzyme mediated chemical reactions take place
to produce a desirable product (or products) from a given substrate (or
substrates) are of some importance because of the numerous potential applica-
tions in commercial production (e.g., purification of fruit juices, proteolytic
treatment of beer, synthesis of antibiotics and steroids). Research on the
operation of such reactors has been carried out in the laboratorv of D. Thomas
at Université de Technologie de Compiégne for several years. Mathematical
models for these processes (which involve reaction, diffusion, and convective
transport) range from simple plug-flow (PF) models to full-fledged diffusion-

convection-reaction (DCR)models {16], [19]. 1In an attempt to formulate

models with the desirable accuracy exhibited by the DCR models (which are




computationally expensive and unwieldy to use, especirlly on small computers)
but which approach the simplicity of the PF models (which in these applications
prove too inaccurate in their representation of qualitative phenomena to be of
practical use), J. P. Kernevez and his colleagues have proposed lumped parameter
models with delays. In these models there are several delays representing
convective transport and a number of diffusive transport mechanisms. One
version of such models, which are nonlinear due to certain reaction velocity
terms, is discussed in some detail by P. Daniel in [12] where additional
references may also be found. To investigate the accuracy and potential
usefulness of these models, efficient methods for parameter estimation

(unknown parameters include several delays as well as kinetile constants) and

control techniques for nonlinear delay systems are essential.

IITI. Gas and 01l Exploration and Recovery

a) Reservoir Engineering Problems

The importance of inverse or parameter estimation problems in the gas and
0il industry is rather well-documented. One class of problems [8&8 ], [15],
[26] involves use of the flow equations in a porous medium (a reservoir or
0il/gas field) to determine the field porosity ¢ (the ratio of pore vclume
to total volume) and field permeability function k . A greatly simplified
model would be based on an equation (derived from conservation of mass and
Darcy's law--see [11], [20]) for the pressure p = p(t,x,v) in a verticallv
homogeneous field of depth h , say

peh 2 = Lk 2y

where U = fluid viscosity, ¢ = fluid compressibility, and § 1is a peneral

sink/source term. The field usually contains a nmber of wells (for oreduction
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1

or observation or both) and a typical problem is to ectimate ¢ and %k or,
alternatively, the total pore volume ¢ = (( ¢h , from observations of p at
Jl

the well heads.

More realistic models involve several miscible flaids and
coupled set of partial differential equations [14], but the frundamenta' irverse
problem is similar, onlv much more complicated, of course.

b) Seismic Exploration

A second class of inverse problems concerns determination of the elastic
properties of an inhomogeneous medium via surface observations after perturbing
"shocks" have produced waves in the medium. Models usuallyv involve the
equations of elasticity [2 ], [17]; for example, in the 1l-dimensional rrodlem
one might consider

32y

3
028 =2 (m ()2
ot

i

where p 1is the wmass density and E A + 2u for compressional or P-waves,
E = 1 for shear or S-waves with A,u the Lam® parameters. The boundary
conditions at z = 0 <(here =z 1is the vertical distance from the surface)
include excitation or perturbation of the medium (often this source input
itself 1s a quantity to be "identified’). From observations at the surface

2 = 0 (these observations usualiyinvolve the unknown source input and a
velocity term g% for particle displacement), one wishes to determine the

unknown functions © and E and, in addition, the source term if it is

unknown.

IV. Large Space Structures

Another class of control and identification problems for which the models

are based on the equations for elastic structures are those dealing with




large space antennas. One such antenna that is currertly being developed by

NASA is the Maypole Hoop/Column antenmna which is depicted in Figure 2

‘// FEED ASSEMBLY
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Figure 2

This antenna, which when fully deploved somewhat resembles an inverted
umbrella (100 m. in diameter), consists of a membraneous surface of gold-
plated molybdenum reflective mesh, a collapsible hoop or ring on which o
surface is stretched, and a telescoping column to which the antenna surface j
is anchored and on which feed assemblies are mounted. The antenna in col-
lapsed configuration (similar to the popular ''travel umbrellas' that collapse
to fit into a briefcase or small suitcase) is to be transported into space
in the space shuttle; it is then deployed for use as a communication antenna.
The antenna surface itself is flexible and its shape (and hence focusing

properties) can be changed via control stringers attached to 48 equally

ol

spaced radial teflon coated graphite "cords' ( 4 vcontrol stringers per

radial cord or "gore" edge). In additicn to the dynamic identification And

”
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control problems associated with initial deployment of the Maypole Hocp/Column,
it is anticipated that after long periods of operation, the reflector surface
will (due to changes in elastic properties and forces) require adjustment.
Thus a static problem of interest consists of the following: Determine from
observations (through sensing devices placed on the gore edges on the surface)
the present configuration of the antenna surface and then effect the desired
configuration or "displacement" through adjustment of the control stringers.
A typical problem then might involve a partial differential equation for
the displacement of a circular membrane or thin plate, say P(D,q)u = f ,
where D represents spatial differential operators, gq represents elastic
parameters to be estimated, and f entails applied forces. A simple example

might be

9 E du, _
55(;‘359 = f

) Ju
5—;(1’ E'é;) +
where E = E(r,8)

V. Dispersion Models in Ecology

An important problem to population ecologists [21], [22] concerns the

movement of insects (or, mere generally, herbivores) through vegetation

patches. Outbreaks or cyclical population explosions of some insects are
observed and it is believed that the nature of the transport mechanisms for
the insects affect the occurrence (or lack thereof) of outbreaks and their
magnitude and periodicity. Typical equations to describe movement of the
insects involve both diffusive and advective (convective) terms, e.g. for

l-dimensional models

9N 3 l oN
3 3 =5 (D) + £,
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in addition to the usual sink/source terms f . Depending on the species
involved, it is genetally;expected that D and/or V can depend on N , the
population level, and/or x , the spatial varjable. The diffusion coefficient

D and the convective velocity V may alternatively, or, in additicn, depend or
temperature or time (e.g. as in seasonal migration of pests).

There are numerous estimation and control problems of importance in the
context of ecological investigations. Typically one wishes to determine the
coefficient functions D and V from observations of N and once this is
done, one might wish to estimate the optimal vegetation density in a patch
in order to hold population levels in the patch to a minimum, or at least
below some given level.

*

VI. Tramsport Models in Physioclogy

In physiology a great deal of research is devoted to questions concerning
transport mechanisms such as simple (passive) diffusion, bulk flow or convective
transport, facilitated diffusion, and active transport. An example is the
effort [ 9], [10], [23], [24] devoted in recent years tc the controversy
involving bulk flow vs. molecular diffusion of brain incerstitial fluid in
gray and white matter. The mathematical models again are based on the

convection-diffusion equation

for the concentration u of a labeled substance such as sucrose in brain

tissue. From experimental data (for u at various times and locaticns in the
tissue samples) one seeks to estimate values for V and D 1in grav and white
matter and contrast the transport properties of each type of tissue. We shall,

in a subsequent section of this presentation, discuss in scme detail an
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application to these transport problems of some of the methods that are the

focus of attention in this lecture.
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§3. Theoretical Foundations

We turn now to a discussion of the theoretical techniques that one can
employ to establish convergence results for certain approximation schemes for
nonlinear systems such as (1), (2) or (3). For the sake of brevity we shall
restrict our considerations to parameter estimation problems. A discussion
of the use of the ideas presented here in control problems can be found in
[12] in the case of nonlinear delay systems while the ccse of distributed
parameter control problems is considered briefly in [6].

For the purposes of illustration we shall use a least squares formulaticn
(for a discussion of maximum likelihood estimator ideas, see [ 3] and the
references therein) of the parameter estimation problem. In particular, cne
seeks to minimize

JQ) = 2

N
nm~ms

. lly(ti;q) - g
over a given sett Q of admissible parameters. Here €i is an observation
for the output t - y(t;q) at ti with y(t) = Cx(t) 1in the case of (1),
y(t) = col(Cu(t,xl),...,Cu(t,xp),Dut(t,xl),...,Dut(t,xp)) in the case of (2),
and y(t) = col(Cu(t,xl),...,Cu(t,xp)) in the case of (3), where C and 7

are matrix operators of appropriate dimension and rank.

Our approach entails rewriting (1), (2), or (3) as an abstract equation

z(t) = A(q)z(t) + G(t)

(4)
z(0)

[}
N

in an appropriately chosen Hilbert space Z . The operator A mayv be linecar

or nonlinear and cdepends on the unknown parameters gq . We reformulate the

estimation problems as ones of minimizing




1 0 2

I =5 I |T(z(t;:0)) - &7

. i i
i=1

where y(t;q) = I'(z(t;q)) 1is an appropriately defined output.

We take a classical Ritz-Galerkin type approach to reducing these infinite-
dimensional state space problems to a sequence of approximating finite dimen-
sional state space problems that are readily solved numerically. Yor a given
sequence ZN of "subspaces" of Z with "projections" Ph: zZ - ZN , we
minimize

JN(q) = 12

N
W~ B

P (e300 - €

1 i

1

N . . .
over Q where z is the solution of an approximating syvstem

Ny = AN + Pl
(3) . .

z (0) =P 20 .
In the methods discussed here we always take AN(q) = PNA(q)PN and obtain
a state convergence zN(t:q) + z(t;q) . The ultimate goal, of course, is to
insure convergence of some sequence {EN} of solutions of approximating
estimation problems involving (5) to a solution q of the problems involving
(4). This objective can be attained in the cases of the "mcdal™ and "spline"

schemes we have developed and tested numerically in {4 ], [5]), [671, [V ],

(12].

To date we have employed two different theories to establish state and
parameter convergence. For distributed parameter systems, both modal {61 and

spline [7] schemes have been investigated using an abstract semigroup formulation

and Trotter-Kato type theorems. Briefly, one establishes that the linear

N
operators A and A (we suppress the q dependence here) satisfv a
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uniform (in q and N ) dissipativeness condition and generate Co-semigroups
T(t) and TN(t) respectively. Then treating the nonlinearities
G(o) = F(q,0,2(0)) ( F is defined in an appropriate manner using f from

(2) or (3)) as perturbations, one considers in place of (4) and (5) the implicit

equations
(t

(6) z(t) = T(t)z, + T(t-0)F(q,0,z{"))d~

0 Jo
and

i . t .
%) ey = NPz, + J ™(t - )P F(q,0,2N(0))an
0

The basic tool then is a Trotter-Kato type result which, under the conditions:
N wt .
(81) IT (t)l < Me for some M and « independent of X :

there exists a set 0D C Dom(A) , P dense in 27 ,
(8ii)

such that (ko-A)U is dense in Z for some XO >0

(81i1) |A, ~Az] 0 for z€D
guarantees the convergence
(8iv) ™(t)z > T(t)z for z € 7 , uniformly in ¢t .

The convergence in (81iv), along with (6), (7) and PN + 1 strongly, can
be used to argue state convergence zN(t) + z(t) . This in turn can be used to
establish a desired parameter convergence (for the rather technical details~-

which are nontrivial when the full dependence of the operators, projections,

semigroups and, in some cases, the subspaces, on the unknown parameters gq 1is

A
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taken into account--one should consult [ ] and [7 1).

A somewhat different approach to spline methods for delay systems (') has :

[P STV VPR SR S

been taken in {4 ], { 51, [12] where the nonlinearity f is treated directly

as part of a nonlinear operator A = A(t) (which is now possibly time

dependent). In this case one uses the implicit equations

t
z(t) = Z4 + J {A(0)z(0) + G(o)do
0
N N (¢ N, N N
z (t) =P z, +J {A"(0)z (o) + P G(0o)}do
0
in place of (4) and (5). Under reasonable conditions on f one can establish

dissipative type inequalities
N N
KA (@)z - AT ()W, z - WD € p(0)<<z - w, z - WD

where << , >> 1is a specially defined inner product on Z . With some q
elementary analysis and use of a Gronwall inequality, one then obtains estimates ]

for lzN(t) - z(t)[ in terms of integrals of {AN(O) - A@}z(o) .

il

Desired convergence results then follow from convergence properties of AN .
Again the technical details become quite involved when one treats general non-
linear delay systems with multiple unknown delays. These can be found in
[51, (12].

We remark that one need not have ZN a subspace of Z in carrying out
the above theories. Indeed in both cases (delay systems with unknown delays,
distributed parameter systems with unknown coefficients) outlined above, one

finds that the appropriate PN, ZN , and Z all depend on the unknown parameters

q (through the domain of the function space in the case of unknown delays and
through the inner product for Z and ZN in the case of some distributed

parameter examples as well as the unknown deiays problems) which of course
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vary as one iterates through the sequence of approximating problems (i.e., on

N ). This feature results in interesting difficulties from both a conceptual

and computational viewpoint.
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§4. An Application to Transport in Brain Tissue

We return to the example VI of §2 involving the transport of labeled
sucrose in gray and white matter., A complete description of the experimental
procedures and the questions being investigated can be found in [241. Briefly,
cats are anesthetized and experiments of either 1, 2, or 4 hours curation are
carried out. Labeled sucrose is perfused into the lateral ventricle. At the
end of the perfusion period, the animals are sacrificed and their brains are
removed and frozen. Well-stained areas of gray and white matter perpendicular
to the ventricular surface (along the x-axis in our notation below) are sec-
tioned and analyzed. This yields data corresponding to a fixed time ti for
a maximum of 4 spatial locations xj,j = 1l,...,4 , in gray matter and 8
spatial locations xj in white matter. From this data {G(ti,xj)} for the
concentration u , one wishes to compare transport in gray matter with that in
white matter. The primary questions pertain to tramsport via molecular

diffusion alone vs. transport via diffusion and bulk (convective) flow. In

particular, the mathematical problems reduce to those of estimating D, V, and

C0 in
2
du gy _p3u
st "V TP
«Wt,0) = C,

In the early experimental work, data for only one time ti (1, 2, or &4 hours)
and for anywhere from 4 to 8 spatial locations xj were available. A
substantial concern is whether one can develop accurate methods for estimation
of the three parameters in question from such limited data.

We have successfully applied the modal methods of Example 4.4 of [6] to

investigate these problems. We first summarize briefly the pertinent ideas

behind the methods. For the purpose of illustration, consider the example




u(t,0) = u(t,l) =0

U(O,X) = ¢(x) ’

which can be reformulated in the form (4) in 2z = L2(0,1) by choosing
A(q) = qlD2 + qu (here D 1is the differential operator in L2(0,1) ) with
Dom(A(q)) = H? N Hé .

dissipative (although it is not self-adjoint). TFor the development of modal

It can be argued that A(q) is uniformly maximal

approximation schemes, general spectral results given in [13] can be emploved.
It can be seen that A(q) 1is a relatively bounded perturbation of a discrete
spectral operator and is itself a discrete spectral opcrator with a resolution
of identity and associated eigemmanifolds and projections. The eigenvalues
are found to be Xj(q) = -jzﬂqu - q;/qu with associated eigenfunc*tions

]

J(q) = exp{-qzx/qu}sin Jm™x . The natural modes or eigenfunctions form a
complete (but not orthogonal) set in 7 = Lz(o,l) . However a choice of

EN = span{wl(q),...,wN(q)} » while desirable theoretically, is not useful in
parameter estimation algorithms since the basis elements are then dependent

upon the unknown parameters (and thus change with each new estimate cf the

q's ). One can use instead the near-modal functions Qj(x) = Y2 sin j7x ond

N

-

take ZN = span{@l,...,¢N} with, of course, A = PNAPN where PN is the
canonical projection of Z onto ZN

Convergence can be argued using the Trotter-Kato formulation of (8i) - (8iv)
above. The stability condition (81i) follows immediately from the uniform

[~

dissipativeness. Choosing D = U EN(E) , where q 1is a limit of the sequence
N=1

of estimates q N » the spectral results yield (8ii) trivially while one must

work somewhat more to establish (81i1i).

With regard to implementation, the scheme offers some nice computational

features since the matrix realizations of the operators AN(q) are given by
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[AN(q)]ij = 0 i£4,1i+1 even,

quz[—‘-izz_ijz] 141,141+ odd.

Turning to our investigation of these methods for possible use in the

brain transport questions, we first tested the methods with an example for

= ks,

which the solution was "known'". (J. Crowley and M. Garrett carried out the
computations for this problem. J. Saltzman supplied a "known'" solution
technique involving an infinite series which was used to generate "data"
corresponding to fixed parameter values in the equation. This technique is
totally unrelated to the methods we were testing.) The example used was

Be T 9% T 9V

u{t,0) = 4 > u(t,1) =0

u(0,x) = ¢(x) ,

where ¢{(x) = aox2 + a,x + a, is a quadratic satisfying ¢(0) =1, ¢(1) = 0,

and max ¢ = ¢(%) . "Data'" were generated corresponding to true values

q{ = .3, qg =1.75, and qg = 1,0 . A number of numerical trials with .he
above described "'modal" scheme were conducted in which the inverse problem fo:
varying amounts of "data" was "solved." We summarize briefly some of our

findings. In the examples presented here, the notation I =%k , J =p in an

example indicates that the data set for this test consisted of values

u(ti,x Y o i=1,...,k, 3 =1,...,p (i.e., k X p 'observations'" were emploved

3

in the inverse problem).

Example 1: It was assumed that qy was known and an attempt to fit the data

was made by searching for 9 and 9y - Initial guesses (for each value of N

‘—m—" . : o
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N,0 _ N,0 _

tried) were 9 1.0, q, 0.0 . The "converged" values (corresronding

to N=8 or 16 in this and all the examples presented here) were:

I=1,J3=3 § =182 g,-= .83 |

1=2,3=3: q = .2979 52 =1.7557 . i

1

Example 2: This example was exactly the same as Example 1 except initial

guesses qT,O = .75 , qg’o = 1.0 (somewhat closer to the "true' values than

those used in Ex. 1) were used. For I =1, J = 3, the results were

§1= .3009 , 52 = 1.7529 , quite acceptable in this case.

Example 3: We investigated the effect of using increasingly more spatial

points in our data grid (i.e., I = 1 with J = 4,5,6 ). For initial guesses

N,0 _ N,0 _

ql .8, 9, .9 , increasingly better estimates were obtained as the

number of spatial grid points increased. We obtained:

.6115 .4903

-
fl
=
o
"
w
[N ]
fon
[}
L0
N
N
[
hahing

-
n
[y
-
[
n
&
H.n
n

.3018 g, = 1.7468

I=1,J=5: 9 = .2978 q, = 1.7492

L2984 g, = 1.7493 .

It is clear that 4 points in the spatial grid vields an adequate amount of

data for this example.

Example 4: In this case we wished to estimate 4,19, and the boundary con-

0 N,0 _ N,0 _

centration q, - Initial guesses were q?’ = .8, q .9, qy .5 .

b
L

The converged values were:
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#
[
o
-0
*x
[O¥]
NE|

L

I=1,J=6: q =.2990 a 1.0356

g T 10T a4
= ,2997 52 = 1.7469

"

-

]
[y
[

fl
L=}

£

=

1.0012

Example 5: As a final test we modified the initial function & wused in the
above examples to ¢(0) =1, ¢(x) =0 for x # 0 . This represents the tvpe
problem (one with a discontinuity in the boundary-initial data) that one
encounters when using the actual data collected in the experiments with cags

described above. Again the results obtained were encouraging. With I = 2,

N,0 _ N,0 _

J = 6 and initial guesses ql .8, 9, = .9 , converged values of
51 = .3019 , az = 1.7635 were found with a residual sum of squares of
4.3 x 1077 .

In summary, the numerical tests reveal that it is probably unreasonable
to expect to solve with the '"modal' methods the inverse problems for I =1,
J = 3 in most cases. However, problems with I =2 , J =3 correspond to a
reasonable number of spatial observations for the method in some cases. (Bv
changing labels during the perfusion period, Rosenberg, Kyner, and colleagues
are now collecting data with two time grid points.) For data from white ma:zter
(where J = 6 1is feasible), the methods should prove useful in estimating

D, V, and C in the transport wmodels.

0
We have, in fact, used the methods with actual data sets (I =1, J = %)

f

for white matter supplied by Kyner and his associates. The 'meda'' methods
appear to consistently perform in an acceptable manner. Tvpical values obtained
in solving the inverse problems are D = 2.7 x 10_6 cmz/sec., V= -5.99 um/min.,
C0 = 128.5 , values that are consistent with expectations based on values

obtained by Kyner and associlates using other techniques.

We anticipate that extensions of these methods (or perhaps the spline
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k-
methods developed in [ 7 ]) will prove useful in future investigations of the
channeling structure in white matter (in these problems the velocity ccefficient

V will be spatially dependent as will also, in some cases, the coefficient of

diffusion D ).

& dacan e

!
1
1
I




§5. Estimation of Function Space Parameters

The theory developed in [6 ] and [ 7 ] deals with estimation of parare+crs
in Euclidean space sets. The framework is, however, general enough to allow
one to treat problems in which unknown function space parameters must he
estimated. In this section of our presentation we shall give a brief sketch
of hcw one further develops such a theory. At the same time we shall illustrate
some of the ideas fundamental to spline methods as oprosed to the "modal"
methods discussed earlier.

In order to demonstrate the ideas we shall consider an equation of the

porous media type (see §2.1II1a)); that is, we consider

du _ 3 du.
9 ql(X)a—t = 3 (q?_(X)ax) + £

with homogeneous boundary conditions u(t,0) = u(t,l) = 0 . 1In relating this
to the porous media application (then u = pressure), one might consider large
fields for which the boundary terms are either constant or slowly varving in
time. In either case, such nonhomogeneous boundarv problems can be transformed
to problems with homogeneous boundary conditions in a quite standard manner.
With certain smoothness assumptions on ql,q2 » the operator in equation (9}
can be viewed as a standard Sturm-Liouville operator (i.e. identifv

ql ~k, q2 ~ p 1in the usual notation for the coefficient functions--see (3)
above and p. 40-42 of [ 6]). For our discussions here we shall assume that

q = (ql,qz) is to be chosen from a parameter space Q C L2(0,1) x L2(O,l)

satisfying Q C {(ql,qz) € H2 x H3|q2 >0,0<mc< qy < M} . (The smoothness

hypothesized will guarantee certain smoothness properties for the eigenfunctions

to be discussed momentarily.)

We rewrite (9) as an equation

(10) z(t) = A(q)z(t) + F(q,f)




in the state space 2 = X(q) = L2(0,1) where we take as inner product
1

<¢,w>q = J ¢wa . (Here the spaces do depend on the unknown parameters, a
0

complicating possibility we mentioned earlier.) The operators in (10) are

(e

ol
given by F = g; f and A(QY = é; D(qZDW) , where Dom(A(q)) = ¥ Ny
1 1
Simple integration by parts arguments yield <A(q)z,z>a < 0 so that A(c)

is uniformly dissipative in X(q) . 1In fact A(q) is maximal dissipative and

generates a C_-semlgroup, and we are thus in a position to consider (6), (7)

0
and the Trotter-Kato approach to approximation schemes.

To describe the spline methods we need to recall the definition of some
standard cubic spline basis elements. For any positive integer N we let
t? =3/N,3=-3,...,N+3, and let E? , 3 =-1,...,N + 1, be the cubic
spline that vanishes outside (t?_z,t?+2) , has value 4 and slope 0 at t$ ,
value 1 and slope 3N at t?-l , and value 1 and slope -3N at t§+l . (See 12

51,

p. 73--and note that our elements here differ from those of Schultz only by a

multiplicative factor of 24 .)

For our modified basis elements B? we take the restriction to [0,11 of

the following:

|
By = By - 4B,

N N N

B) = By - 4B

BN =B, 5 =02,...,82,
i3

N ~N N

By-1 = By 7 %Bya

N NN

By = By = “Byer -

We note that these elements are in Dom(A(q))
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We define our approximation subspaces XN(q) C X(q) by

XN(q) = span{BN,...,BN} and let PN(q) be the canonical projection of X(g}
0 N

N N N N N
onto X (q) , i.e.. P (qQ)¥ = I '<w,Bj>aBj . Finally as usual we take
i=0

A = ANg) = MA@ .

Under an assumption that Q 1is compact in HO x HO , one can argue in
this case that solutions to the estimation problems for (5) (or (7)) do exist.
We in fact assume that Q 1s compact in the C X Hl topology so that we
henceforth assume without loss of generality (possibly by taking a subsequence)
that we have a sequence {qN} of solutions to the estimation problems satisfy-
ing q" + g in ¢ xH with q€ Q.

We briefly indicate the steps to verify (8i) - (81ii) to insure convergence
of the semigroups generated by AN(qN) to the semigroup generated by A(q)
(As we have noted before, this 1s the fundamental convergence result needed

for both state and parameter convergence.) The stability requirement (81i)

follows from

N, N N..N, N N, N
<A(q)z,2> = <A(@)P (q)z, P (q)z> SO,
q q

the inequality being a result of the uniform dissipativeness of A(qN)
The operator A(a) has, by the usual spectral results, a CONS of eigen-

functions {Wj(a)} . In (8ii) we take

-]

D= U span{¥ (q),...,¥ (Q)} .
N=l 1 N

It is then easily seen that the conditions of (81ii) obtain from the completeness
of the ¥, and the relationship (Ao - A(Q))Y

b ]
We finally consider (8iii1) and note that the spaces X(q) , q € Q , are

(@) = (AO - XJ)Wj(q)
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all equivalent (recal) 0 <. < 9 < M), a fact which plays a fundamental role
in the basic theory developed in [6]. Indeed we mav, in considering any

convergence results, equivalent.y 'se the L topology. Thus, to establish

2
(8iii), it suffices to argue

(11) AN(qN)\vj - A@Y,

in L, . From the smoothness assumptions on Q (and hence E Y it is easily

2
seen that Wj € Ha . Since Wj € Dom(A(a)) we also have W* € Hé . Hence,
it suffices to fix Yy =V (a) in HQ N Hl and argue that (11) holds whenever

i 0
" +q in Ccxu .
Estimates similar to those we need can be found in Theorem 6.13, p. 82 of

[25]. However we cannot use those estimates directly since our projections

PN(qN) (onto XN(qN)) are not the same as the standard projections (of

onto S(N) = span{gfl,ig,... B } .

Thm. 6.13) of L Byyy

2 But using fundamental

ideas similar to those found in [25] (e.g., the Schmidt inequality and estimates

for the appropriate interpolating splines) one can establish:

For ¢y € I-l4 N Hé s

K
lv - PM] <L o)
N
K
Ipw - 20| <N—§ 0%y

K
2w - PMwy| <=2 oyl
N

where the norms are the usual L2 norm , PN = PN(qN) as defined earlier, and

the constants Kl’Kz’K3 are independent of N and V¥ .

2 DWN + DY in C , where wN = PNw .
1

Furthermore we know that q? > El in C , qg -+ 52 in H” ., Since PN =1

We thus have Dsz > Dzw in L

it thus follows from elementary arguments that
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N N N N N N, N N
AN@e = PP + (ay/a) 0y

converges in L2 to

A@WV = (1/3))D3,Db + (3,/3,)D%% .

The assumptions on Q made above are not unreasonable for many
applications. We have successfully used these spline methods in computational
packages for function space parameter estimation in models for insect
dispersion (see §2.V). 1In those applications, the smoothness and compactness
assumptions listed above are satisfied when one formulates the problems and
parameterizes Q 1in a way that is natural for and consistent with the

experimental and theoretical efforts of population ecologists.
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